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ABSTRACT

Motivated by an analogy with Abelian thcorigs, we
corstruct a new dualit; transformation for non-Abelian
gaug? theories. Tor large ccupling the gauge theory
vacuun should kave 1ts most important contrihutions {rom
corfugnrations of the dual fields without large fluctuaticns.
The gencrating functional when expressed in terms of the
dual variables has a rather simple and suggestive structure
w'ich manifests some features of a gauge theory,but now a
geuge theory of the Jdual variables with the coupling constant
inverted. We discuss several aspects of this representation
including the possibility of using it as the basis for a
strong cenpling expansion for the field theory. We also
investigate a systematic, formal (perturbative) solution to
a constraint condition among our dual variables which has the

form of a Bianchi identity.
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I. Introduction

Duality transformations have proven to be extremely useful
for theories with an Abelian symmetry} These transformations
are generallzations of the work of Kramers and Wannier on
the two dimensional Ising model. 2Among their virtues is
the property that the strong coupling region of a theory is
mapped into the weak coupling region of another (dual) theary,
and vice yersa. (In statistical mechanics, a statistical
system at high temperatures is mapped into a dual statistical
system at Jow temperatures.) Applying a duality transformation
to a strong coupling theory one may therehy achieve two ends:
First, sincc the dual theory is a weak coupling thecory, the
picture of the vacuum (or ground statc) should he much
simpler in terms of the dual variables. For small values
of the dual coupling constant the fluctuations of tﬁc dual
variables should noct be too large. Second, one may achicve
a calculational advantage since it may be ponssible to do
perturbation theory in the dual coupling constant., 1In
addition, it is sometimes possible to derive a third benclit
from using dvality trans{ormations, in that the rdoie of the
topological excitations of the theory mavy hecome transparent.

Unfortunately, the generalization of duality transformations

to theories with a gencral non-Abelian simmetry is not so stratghtforward.

. - 3
A number ¢f different approaches te ihis problem have been tried,

yielding varying amounts of insight, but so far none has

provided a form which is as elegant as that obtained for



-

Abelian theories. This is particularly frustrating in view
of the fact that continuum QCD cries out for a tractable
strong coupling calculational scheme to verify (or disprove)
con{inement and compute the hadronic spectrum. 1In this paper
we shall describe another attempt to construct a dual form
of tlie non-Abelian gauge theory. Our approach leads us to
a relatively simple and suggestive dual representation of
the theory with a number of intriguing features. Unfortunately,
as with other investigations of non-Abelian duality, we have
not yet bcen able to establish 2 well-defined strong coupling
expansion using our representation. Nevertheless, we feel our
represcntation is sufficiently attractive to merit further
studv and discussion. -

To motivate our approach, it is convenient to first
review the derivation of the dual form for an Abelian
theory. For our purposes the most appropriate theory to
consider is a four dimensional Abelian gauge theory. There
are two important ingredients in the Abelian duality trans-
formation which we wish to use in our recipe for non-Abelian
theories. To illustrate these we first describe the duality
transformation for the trivial theory of free photons in the
continuum in four Euclidean dimensions. Following this exercise,
we briefly review how the same approach generates a simple
dual form for non-trivisl Abelian theories, using as our

example compact QED on 2 four dimensional lattice. To



finish setting the stage and motivating out work we then
briefly describe the problems cone encounters if one tries
to construct a non-Abelian duality transformation by the most
straightforward generalization of the Abelian casc.4
The generating functional for free photons ié
X F)

z -‘JDAu e &YWV (1.1)

where

Fuv = avAv - avAu

and

- 4
(F, F) ¢ Jd x Fy, (0F,, ()

The constant k has no physical significance in (1.1), but is the
analogue of the inverse of a coupling constant in interacting
theories and is useful for seeing the effect of the transformation.
We now introduce a field, Wiv which is Fourier conjugate
to Fuv' and write (up to overall constants)
“i%(w v¥ \:)"'j‘(;‘r v Fypy)
= J DA, Dw e“" FVH e (1.2)
u uv

-~ - 1 ; .
where Yoo " T €uveo Yooo The last term can be integrated byl
parts. Ignoring the surface term {or, choosing boundary
conditions so that it is zero)} we have
(“uv’wuv)_l(Au’akuu)

7= {naun Yy e 2k " (1.3)



Integrating over Au, (1.3) becomes

1

= (W oW )
7 - IDwuve 2k Tuvt Tuvy 8(3 %, (x)) (1.4)

X
The delta functions in {1.4) will be satisfied if and only if
we write

"o T Fuuao aABc (1.5)

Ysing (1.5) in (1.4) yields {up to overall constants)

1
'?FfalBO-BUBA' alnc—acak)

= jﬂBu e {1.6)

which is the same as (1.1), but with kK + 1/k.

There are several points to note about this result.
First, while it is perfectly true that {1.1) and (1.6) are
trivial the process by which we went from (1.1) to {1.6)
its not. In particular, there are two important steps.

The first is the Fourier transform (1.2} which has the effect
of inverting the coupling constant (or what would be the
coupling constant were the theory not trivial)., Second is
the appearance in (1.4) of a Bianchi-identity-like delta
function which ls generated by an integration over the
original dJegrees of freedom of the system, in this case the
Au's. We shall incorporate these two elements in our treat-
ment of non-Abelian theories. Notice glso that the

integration over Au was performed wilithout fixing a gauge.



The infinities that result are contained in the over compiete
set of delta functions. Nevertheless, it is important to
recognize that one can formally carry out the Au integrations
in (1.3) without choosing a gauge. Finally, we remark that
the fact that {1.6) is a gauge theory is peculiar to four
dimensions, and is because the dual of a two-form (i;e. F )

uv
in four dimensions is also a two-form. Had we carried out

the duality transformation in three dimensions, the delta

functions in (1.4) would have been satisfied by ¥ = ¢ 3
Py vl oA

&,
and {1.6) would have become a theory of a free massless
scalar field.

We next briefly describe the effect of the duality
transformation on a non-trivial theory, the U(1l) lattice
gauge theory. A discussion of the U(l) lattice theory
%ill give us the background to see where the most straightforward
generalization of duality to a non-Abelian theory ccases to

be simple. We recall that the generating functional

for the U(1) lattice gauge theory is

n m™
7« l Ds, el - I m a8 (5) T eBeosif, [ (5)] (1.7)
- 'ﬂJ'u P
where
L = 8} cos[buev(j)-aveu(j)} (1.8)

P

and fuv(j) is the argument of the cosine in (1.8). Associated



with each link of a four-dimensional hypercubic lattice is a phase,
els”(J), where j is a vector which labels the lattice site
{(for simplicity we drop the vectbr notation on j) and y 1is
a direction index. Av is a discrete difference operator:
i.c. Avou(j) = Gu(j)-a”(j-c), and the sum {product) over p in
(1.8) ((1.7)) is a sum (product) over all plaquettes of the
lattice.
Following our discussion of the free photon case, we

Fourier expand each factor in the argument of (1.7} writing

Becos{f ()] in, C5)YF. . (3)
e vv - I . (8) e uv uv
1 n,, ()
Wy o2
- +in _f
- ef EeTB“uv Muvipe (1.9)
n

where for simplicity we have introduced a large £ approximation
for the modified Bessel function, In(B). Using (1.9) in

(1.7) and ignoring some overall factors we find after a little

algebra

b 1 2 ~
- n__-i6. A n
7 = Ina I e 125 Pt 1085y (1.10a)

uv Iy
nos(an,) (1.10b)



The gaggle of Kronecker §-functions in {1.10b) are
generated by integrating over the original gauge fields,
eu' and the sum in the exponent of (1.10b) is over all
plaquettes of the lattice (more properly, over all plaquettes
of the dual lattice). (1.10b) is clearly of the same form
as (1.4). To complete the transformation for the present
case we note that the delta functions will be satisfied if
and only if we write

e () = €0 2y ¢03) (1.11)
where the ¢u's are integer-valued fields associated with the
links of the (dual) lattice. (1.10) then becomes

[ 35 (88,88
1~37 e P (1.12)
{¢}

where we have ignored the harmless overall infinities
associated with not choosiné a gauge.

In the dual transformation of this non-trivial Abelian
theory we again see the two important ingredients emphasized
earlier: First as a result of the Fourier transform
(or character expansion) the coupling constant, 6'1, is
inverted in the dual theory and second, as a result of
integrating over the original field variables which now appear
linearly in the exponent (see e.g. (1.10a)) we produce a set
of Bianchi-identity-like delta functions which force us to a

certain representation of the new field variables, n .,
v



In the next section we will present our non-Abelian
duality transformation based on these ingredients, but first
we want to address the following question which may have
arisen in the reader's mind: The starting point for the
Abelian duality transformation is the character expansion
for the interactions (e.g. {1.9)}). Such an expansion is
also possible for non-Abelian interactions. What happens
if one slavishly imitates the procedure described here for
Abelian theories? For example, one can expand the
interactions of an 0{(3) symmetric theory in spherical harmonics.
use the addition fermula to facter out the dependence on the
fields at different lattice points, and integraté over these
fields as we did in, say, (1.10). One is then left with a
theory in which the indices of the spherical harmonics, % and
m appear as fields which must be summed over. In analogy with
-(1.10b] there is a "Lagrangian"” which depends on {%,m]
and a set of constraints which are produced by the integration
over the criginal field variables. Unfortunately, these
constraints are not just simple delta functions which can
be completely and identically satisfied by a clever representation
for the 2's and m's. Thus the non-Abelian dual theory
gencrated in this way is much more complex than in the
Abelian case, although in certain limits it may be possible
to construct a tractable approximation using this representation.4
Noting the failure of this most obvious generalization of

Abelian duality, we turn now to describe another approach.



II. The Duality Transformation

As was mentioned in the introduction, the basic ingredients
for the success of the duality transformation for Abelian
gauge theories are the Fourler transformation and the Bianchi
constraint which emerges upon integration over the original
vector potential. In this section we shall extend this
principle and try to formulate duality transformations for
non-Abelian gauge theories. Specifically we shall consider
a non-Abelian gauge theory (with a simple structural Lie
group,G) coupled to an external source in Euclidean four
dimensional space, Ed. Although the manipulations will

be somewhat formal, at the end an intriguing form of a
dual theory emerges. Various aspects of our dual formulations
will be elaborated in Section IJI.

To aveid proliferation of indices, we will use the
following inner product notations throughout, except when a
more explicit notation is helpful:

For tensors Fiv and Giv, {i=group index)

(F,6) = jd‘x FL, G,
and for vectors Ai and Bi,

(A,B) = Jd4x A; B;, etc.,

where summation over the repeated indices is understood.
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Our starting point is the partition function, Z,of the
theory given, in the notation above, by
1
zZ - [DA exp {-z(F(A;g),F(A;8))-1g(E,A)) (z.1)

where

i . - i i j.k
Fuvff‘\,g) BUAV EUAU+8Fijk AUA\J (2.2)

and E; is a fixed, external source while cijk are the structure
constants of the group, G. Gauge fixing (e.g. axial gauges)

may be done without difficulty, but since, as we shall see, it
does not play any essential role in the transformation, we shall
formally proceed without explicitly fixing a gauge. As is usual
for duality transformations1 the infinities penerated by such

a procedure will appear in our dual form as z set of redundant

delta-functions.

. i o
It is convenient to scale A; and Fuu defining

a = gh, f(a) = gF(A;gQ) (2.3)
'Then 2 becomes
z - JDa exp (-1, (£(a),f(a))-i(E,a)} (2.4)
ig

. . . i
¥e now introduce an antisymmetric tensor field "vv(x) and

Fourier transform (2.4) into the so called first order form, viz.,

2 i -
2+ [paw exp G - EG)-1(ED) 2.5
where

wiozl 1 2.6
"uv © T Suvap VeB . ( )

is the dual of ”tv‘ Notice that by this transformation,

the coupling constant g is effectively inverted.

’
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let us examine the second term in the exponent of (2.5)

more closcly. Explicitly,
- 4 =i i i
CRIGHENE o oy 13k 1a%)

- ]a x Wl (20 alec, ky (z.7)

ijk ua
It is convenient to introduce 2 symmetric, in general non-

degenerate, matrix Tﬂﬁ(ﬁ) defined by

Ht

jk .~ -1
Tuv(w) Wiy cijk {2.8)

This is to be regarded as a matrix in the pairs of indices §,u)
and {k,v). For G=SU(2), for example, it is a 12x12 matrix.

Then by integration by parts, (2.7) becomes

(w,£(a)) = zjd x3 (wuv v)
- 2(3w,a)+(a,Ta) (2.9)

where 3w stands for auG:v. The first term is a surface term.

" By Stokes' theorem,

Jd x 3 (wu“ 3 - J as¥ul ol (2.10)

where o is a closed surface at infinity. This may be further

rewritten by introducing a surface current,E{U],defined by

{2.11}

-~

i ~i
Etolv = Su "uv %fo)

wherte 6[ 1 is a delta-function with its support on the suriace
o,and s, is the unit vector outwardly normal to o. Then (2. i0)
takes the form

Jd xau(wuv ;) - Id X Elo]u u (EIU],a] (2.12)



-12-

Thus, the surface term in (2.9) has the same form as the

external current term in (2.4). (2.9) now becomes

(v, £(a)) = (a,Ta)-2(3w,a)+2(E[ 1,3) (2.13)
This form will be useful later. Using (2.13} in (2.5), we obtain
2 :
7= {DaDw exp {—§— (W.W)-%(a.Ta)
-1 (E*E[U]pa)*i(aw)a)} (2’14)

At this point one may perform the Gaussian integration over

the vector potential, a:, and obtain the so called field

strength form®in which the theory is written entirely in
terms of wév. But we shall resist the temptation to do

the Gaussian integral, and instead follow a different route

in our search for a dual theory. We recall from our study of
Abeclian theories that the second important feature of duality
transformations is the existence of a Bianchi-identity-like
delta function constraint through which one makes a transition
into the space of dual variables., To make the scheme clear,

we shall achieve this in two steps. First, we perform a

second Fourier transform on the quadratic part (ir a) of the
integrand in (2.14) by introducing a current ji(x). viz,,

CXP(‘%(H.T&)) = Jnj (det T}'llz exp {%EJ,T'lj)-i(j,a)]
(2.15)

where (det T)'”2

is necessary to cancel the functional
determinant associated with the Gaussian integration. (2.14]}

then becomes
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2 .
Z = JnaDij(det 1) V2 exp {-§—(w,w)+%(j,T'lj)
+ i(aW-5-8-E o q02)] (2.16)

for which the integration over the ai is now trivial to
perform. Making the shift of the variable j - j+£+£[o]'
the result is
7 - IDij (det T)
x exp {-ﬁi (0,9) + FGEEo1T  Gegrgg10) )
{(2.18)

V25 03-3)

As in the Abelian case, the delta function that appears in
(2.18) comes precisely from the integration over the original
degrees of freedom, i.e. the Ai. To see that it is a kind

of Bianchi constraint, we make a change of variables from

ji to a dval vector potential bi defined by
si: c Gj bk
Iy T ijkuv "y "
. 2.19)
- Txkbk
Vi U
Then {2.18) becocmes
z = JDwDb /det T §(3w-Th)
2 .
x exp(- §—(w,w)+z(b,To)-1(b,£; )
“1 (0, )43 (506 4, T 1 (E2E (1)) (2.20)

Now with the use of this delta function, the second and the

third term in the exponent of {2.20) may be written as
70, TH)-i (6,6 1) = -7(b,Tb)+i(b,Th) -3 (b, & )

- "‘iZ‘ {[b,Tb)-Z(a;,b)+2(E[°1 'b))

(2.21)
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Eq. (2.13}, however, tells us that this is nothing but
- 7 (W, £(b))

Thus Eq. {2.20) simplifies to

7= annb VdeT T §(3w-Tb)
2 s
x exp{-B—(w,)-3(%,£(b))

S (b, (Eerp T (R0 4))) (2.22)

To see the effect of the duality transformation more clearly,
let us scale back the variables in the following manner,

Define W and B by

W = l W

& (2.23)
b =1p

g

E[G}(;) and T(w) in terms of W are given by

=Ll my:l
B = 5 3™ = § Fo)

(2.24)

e = l W T .1_ ’

IT(w) : T(W) 2 T
Thus {2.22) becomes
z = annn e T s(aﬁ'-%TB)
X exp {-%(W,W)-—iz (ﬁ, F(B;l))
g g
i Wi . =-1 +F .

This is the direct generalization to the non-Abelian
case of the dual form for Abelian theories, e.g. Eqs. (1.4)
and (1.10). This form has a number of intriguing features

as we shall discuss in detail in the.next section.
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Before doing so, however, let us briefly comment on a
mathematical ambiguity apparent in (2.25). There appears,
in the last scalar product in the exponent, a term (E{U],T'la[a]].
This contains two surface delta-functions and hence is difficult
to interpret. Such a term would have a well-defined mecaning
had we worked on a lattice. This suggests that a further
study on regularization and renormalization of the theory
is needed to clarify its meaning. Not having done this, we
shall héreafter work on a closed manifold, so that we may
drop the surface terms and study the corresponding expression

for Z given by
— -1 =
= |DW / w- =
z I DB fdet T &(aW 2 IB)
exp{-%(w,wwi; (B,TB)-2(8,E)
+ g6, T 000 (2-26)

We shall now turn to a discussion of various features of this

form.
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JIT. Aspects of the Dual Representation

Let us recall that in Abelian theories, the final step
in the duality transformation is to express the theory in terms
of the dual vector potential by integrating out the dual
ficld strength variable with the help of the Bianchi-
identity-like delta function. To proceed along the same
lines with the form (2.25) obtained in the previous sectioﬁ
we need to solve the corresponding delta functien constraint,
i.e.,

aﬁ'-éﬂa = 0. (3.1)

An obvious solution is the usual field strength form:

1

v

i _ i i S 13k, ik
Nu“ Fuv(B’g) auB Bqu. (3.2)

-3 glale
vu g
let us suppose for the moment that this is the only solution
‘and perform the integration over W, Noting that in such a

case
Lo(some) = -5 (B3l (i)
2 2g 4 g
i 4 % SIS SO -
+ ;Z Jd xau(huva] surface term 0
{3.3)

the partition function takes the form

AR 1epep.l 1
2+ [oB Vaet T(F(2:1)) expl-3(F(B: 1) F(3:3)

i 3 =1 g
- 2 (B,8) + 5 (6, T (F(B;)0)) (3.4)
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So we obtain the intriguing result that the dual theory is
again a non-Abelian gauge theory with the coupling constant
inverted, albeit with more complicated self-interactions
and more complicated interactions with the external source b
Before continuing, we wish to point out a peculiar
property of (3.4) under space inversion. Unlike the other
terms, the last term in the exponent is apparently odd under
this operation, This is most likely an indication that the
solution (3.2) is not unique, and that this peculiarity
will disappear after the full set of solutions of the Bianchi
constraint are taken into account,
Although the form (3.4} is attractive and suggestive,
we must go back and ask whether the Bianchi-like constraint dges
admit solutions other than the field.strength form (3.2).
One first notes that, due to the linear nature of the constraint

for W,

W2 F(B;é—) (3.5)

is also an admissible solution for any constant, A. Beyond

this class of solutions, the question becomes a very complicated
one, in contrast to the Abelian case. Although the constriant’
equation is linear in W, it becomes non-linear when W is
expressed in terms of B. This prevents one from writing

down any simple solution besides (3.2) and (3.5).
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Ohviously, one necds a more systematic approach to the
problem. Cne such possibility, which we shall explore,
is a perturbative solution based on an expansion in powers of
1/g. Afterall, the solutions (3.2) and (3.5} do have such
a form. Further, in the limit of large g, such an expansion
mav be useful in trying to formulate a strong coupling
approximation to Z. We shall first try to construct a formal
perturbative solution and then later discuss its use in a
strong coupling approximatien. As it turns out, even a
perturbative analysis of (3.1) is not so straightforward and
requires some gencrtal results of harmonic analysis which
are best described in the language of differential forms.
ke shall therefore only discuss the results of our analysis
and relegate the details to the appendix.

The results were obtained in a recursive form (see
(A.20) or (A.22) in the Appendix), and when translated into
a more familiar language are as follows: The general solution

of (3.1) may be written in an expansion in g'l as

R e SR (3.6)
IR g (nuv :
n=0

i i i i
w(n)uvrx) " au“(n)u(’()-a\rmfn]u(x) * Y(ﬂ)u\'[x)

_ % ik .

€
wvaja; 8y 8285%

K
x | &' 6txn) %;:—[w{n,lelszcy)Bascy)1
! (3.7)
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where G(x-y) is the Green's function defined by
3% (x-y) = 6 (x-y), (3.8)
i . . i . .
u(n)u(x) is a vector field, and T(n)uv(x) is a tensor field

satisfying

2 i _
3 Y{n)uv(x) = 0.

Furthermore, the fields in (3.7} must satisfy the constraint

equation
ijk .j B () = .otk
¢ ¥nypy B ¢ Euvalaz 581828302 (3.9)
4 33 3 X
« f dy Glx-y) =— 2w . OIr, (1]
B)p B)al (n) £ % 31

It is not difficult to check that Eqs. (3.6)}-(3.9) do generate

the solution to (3.1) of the form (32.5) (see appendix). lHowever,
the complicated integrability condition (3.9) has so far

prevented us from using the recursion relation (3.7) to explicitly
write down the general solution to (3.1). (See the appendix

for further discussion.)

But let us suppose that we were ahle to overcome this
technical difficulty and explicitly develop W in a power
series in g°1. We now ask whether such an expansion in g-l can -
be used as the basis for a systematic approximation procedure for
quantities of physical interest in the theory. Of particular
interest, of course, are quantities which are sensitive to

the large distance structure of the theory such as the
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asymptotic behavior of the Wilson loop. For such quantities
is there any intuitive reason to suppose that such an
expansion might be sensible?

The almost universal expectation is that QCD in one way
or another confines quarks. If so, then the large distance
structure of the QCD vacuum has significant contributions
from field configurations with very large values of Au and
F . Now, in the sense of functional Fourier transforms,

uwv
v is conjugate to fu“ and ju is conjugate to au, $0 we
might suppose that the dominant contributions to the large
distance structure of the theory come primarily from configurations
of LA and ju which do not have very large amplitude fluctuations.
Toe see this more clearly we note in (2.4) that we expect
significant contributions to Z from f ¢ O{g). Thus we expect

that w < O(%). Now, at long distances, (or large coupling)
we anticipate that the dominant contributions to f comes from

the term cijkagat. In the first place, if the dominant
contribution to f came from the term linear in ai, then

the strong coupling theory would look much like an Abelian

theory in the original variables, ai, plus, perhaps,
perturbative corrections, which is almost certainly not true.
Second, since we expect large coupling to be associated with
long distances (or low momenta)} the térm linear in ai may
well be additionally suppressed by the fact that the term

involves a derivative (or extra momentum factor.) Thus, we
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expect that [a,a] < 0(g). Ignoring for the moment the factthat
the commutator is not just a simple product, we are led to suppose
that a‘iJ <O(/g). Thus, from (2.15) we expect that j g O(i—g).
So, indeed, Z should be dominated by configurations of w and

j which do not have large fluctuations. Continuing with our
heuristic arguments, we see from (2.19) that since j < 3(—1]
and w < Q(%), then bt < &(/g). Thus, superficially,fluctugtions
in b can grow as g grows. These considerations imply that the
most naive approach to constructing a strong coupling
perturbation expansion for Z may not be sensible. To sce

this lets look at the exponent of, say (2.26). Ignoring

terms involving £,we note that the remaining two terms are

both < o{1) so it is apparently not fruitful to try to

perturb in either one of them. (Note that a similar analysis
can be made using (2.25)). On the other hand, while this

may be a correct conclusion, it'is important to remember that
the arguments from which it was drawn were not completely
airtight. In particular, in deducing that a £ 0{/g) and that

b < o(/g) we treated cross products and commutators as if they
were simple multiplication. It is certainly possible

for example, to have [a,a] £ ©{g) but still have a 2 o(/g).
Unfortunately, it is not simple to rigorously determine

whether or not there really are significant contributions to

Z from configurations with b m'O(JE), or whether the important

contributions come only from smaller values of b. Thus



without further study we can draw no firm conclusions about
how one might realize a sensible large coupling perturbation
theory starting from the form (2.26).

Before leaving this topic it is worthwhile emphasizing that
cven if the fluctuations in b can be as large as o{ g}, the
filuctuations in the dual field strength, w, are still small
(sec c.g. (2.22)). This is co be contrasted with the fact that
when g is large and a + C(vg) the fluctuations in the original
field strength, f, are large. Furthermore we note that Z has
& representation in terms of the dual variables v and j‘.i
(see e.g. (2.18)) both of which have small fluctuations for
large g. Thus, the strong coupling vacuum defined in terms
of the dual variables w and j should be "simple" (i.e. not
contain large fluctuations) while it is an open question

whether it is "simple™ in terms of b defined ph;ough {2.19).

There are two other observations we wish to make about
our result, one heuristic and one technical. The first
concerns the size of the term msz in the exponent of, say
(2.26). Recalling that w < 0(%) we see that the coefficient
of the EZ term in {2.25) is a number of order E. Now £
represents the original external current which could be a
quark current, so the 52 term in (2.25} can be thought of as
representing a kind of induced potential between quarks.

Rut the coefficient of this term is «g and so this effective
quark interaction is very strong fo} large g. Qualitatively,

one expects a strong force to be generated between quarks
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for large coupling, and it is suggestive that such an effect
is readily apparent in our dual form. The question of
whether or not this is significant for confinement
£equires further study.

Cur final comment is a technical one. I1f one chooses to
boldly pursuc the analysis of (2.26) and tries to develop a
computationally tractable strong coupling scheme, one must

1/2 in the functional

decide ‘how to handle the factor [det Tj
integral. At least for the case of SU{2), an explicit
expression for this determinant exists? Unfortunately,

such an expression is not necessarily computationally

useful. An alternative method of dealing with this decterminant
is to introduce ghost fields and write an exponcntiated
representation for it in the usual way. But from the point

of view of perturbation theory this is not much better since
there are no quadratic damping factors for the ghost field
integrals. A possible solution to this problem is to couple

i

ur and

massive Higgs fields to the original gauge fields, a
perform the duality transformations on this coupled theory.
The exponentiated representation of the determinant wiil then
have a well-defined perturbation expansion for any negative.
non-zero Hipgs mass term}; Now the vacuum of the theory wiltl

certainly be different with the Higgs field than without.

However, it may be that for sufficiently small negatiye
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Higgs mass term we would be able to see the effects of the
unbroken, symmetric theory over distances r ¢ %. If so, it
might be possible to deduce some of the features of the
symmetric, strong coupling vacuum from such a calculation.
Su;h a result would be analogous to the behavior expected

near a second order phase transition.
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1V. Conclusions and Summary

Motivated by an analogy with Abelian theories, we have
constructed a duality transformation for non-Abelian theories
which has a number of interesting properties. First, under
our transformation the coupling constant gets inverted in a
certain sense, so that our dual variables are expected to
have only small fluctuations when the coupling constant is
large. This is precisely the kind of behavior we encounter
when applying duality transformations to Abelian theories,

Second, our dual form has, loosely speaking, the structure
of a gauge theory. Recall, for instance, that the contribution
to the dual form of Z from Whu(Bv) chosen to be the usual
field strength tensor (which therefore satisfied the Bianchi-
identity like constraint in (2.26)) had a form quite close to
that of the usual genevating functional for the non-Abelian
gauge theory, but with g » g-l. Finally, the dual form of
the generating functional, e.g. (2.26), is rather elegant.

One of the factors that appears in the dual form of I
is a functional delta function enforcing a Bianchi-identity
like constraint on the fields wuv and Bu' It is therefore
of interest to ask what W's are allowed by this Bianchi-like
constraint for a given B. This problem was discussed in
Section III and a systematic formal, perturbative (in powers

of g-]) solution was studied. Having understood, at least



formally, what W's and B's are allowed by the Bianchi
constraint, we investigated the possibility of using our

dual form of the generating functional to construct 3 systematic
strong coupling approximation scheme. Unfortunately such a
scheme proved to be very elusive, and we failed to sati;factorily
formulate oue. Nevertheless, in analogy to what happens in
Abelian theories, it is quite possible that onc or the other

of our dual forms may be able to provide us with a starting
point for such an expansion. In view of this possibility

and in view of the suggestive structure and intriguing
‘propertics of our dual form we feel that this approach merits
further study. l

Acknowledgements

we are very grateful to M, Einhorn, D. Williams, Y.-P. Yao
and especially Daniel Burns for many useful comments. R.S5.

‘also thanks J. Kiskis for a number of enlightening discussions.



Appendix. Perturbative Solution to the Bianchi Comstraint.

In this appendix, we shall discuss the perturbative

tcolution to the Bianchi constraint

=i 1 o5 ook o
uhuv 2 cijk“uvnu 0 [A.1)

defined over a closed, compact, but not necessarily simply
connected manifold,M. To facilitate our manipulations and to
utilize seme powerful results of harmonic analysis, we employ
the elegant formalism of differential forms. We shall give
only the minimum of definitions and notations which are
necessary for the analysis and quote theorcms and propositions
without proocf. The interested reader can find more cetails
in, for example, Ref. i0.

We begin by defining the Lie algebra valued l-form B
and 2-form W by

i

Ble. dx" = Ble.
T

B
1

H

1 .1 u L |
¥ ¥ wuvei dxadx” = W e {A.2)

where {ei} are the generators of the lLie algebra of the

structure group G satisfying
.[ei'ej} * Si5x%k (A.3)

and the symbol a denotes the antisymmetric exterior product.

The bracket product such as [W,B} will often be used, which

is a shorthand notation for WiABj[ei,ej]. The linesar operator *

(the Hodge star operator) produces from a p-form its dual

(4-p)-form (in four dimensions). In particular *B (a 3-form)
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Appendix. Perturbative Solution to the Bianchi Constraint.

In this appendix, we shall discuss the perturbative
colution to the Bianchi constraint

i1 wJ nK
3W L : cijkhwa‘J 0 {(A.1)

defined over a closed, compact, but not necessarily simply
connceted manifold,M. To facilitate our manipulations and to
utilize some powerful results of harmonic analysis; we employ
the elegant formalism of differential forms. We shall give
only the minimum of definitions and notations which are
necessary for the analysis and quote theorems and propositions
without proof. The interested reader can find more details
in, for example, Ref. 10.

We begin by defining the Lie algebra valued 1-form B
and 2-form W by

gle. ax* = Ble
Thb

B :
i

W

1 .1 B vo_ o, d
¥ Wu“ei dx"adx” = W e, (A.2)

vhere {ei} are the generators of the Lie algebra of the
structure group G satisfying

[ei,ej] = cijkek (A.3)
and the symbol a denotes the antisymmetric exterior product.
The bracket product such as [W,B] will often be used, which
is a shorthand notatien for wiABj[ei,ej]. The linear operator *
(the Hodge star operator) produces from a p-form its dual

(4-p)-form (in four dimensions). 1In particular *B (a 3-form)
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and *W (a 2-form) are defined by

1 i 3} v a
R - Q. A A
B T equo }3'J ldx dx adx

AW = % ﬁiveidxuadxv : (A.4})

2R = -B, KAy = W
(The * operation depends on the aetric of the manifold.
Throughout we ronsider a Fuclidean metric.)

The diffeicatial operator d which sends a p-form into a

pri-fuerm is defi-od by

s
4 = 0
Iy <My . LIV | _ u v
A(B dx") Bv,udx Adx f(Bv,u Bu’v)dx Adx

1. u vy o1 O, g W, 4.V
dtﬁhuvdx adx ) Zwuu,a dx“adx"adx {(A.S)

“heve o denotes dJifferentiation with respect to x®. The
co-differential operator 8§ and the Laplace-Beltrami operator
4 are defined by

3 = -%g* {Fuclidean metric)

A = d5 + &4
8§ and A map a p-feaa into a p-1 form and a p form, Tespectively,
A diffevential fom v is said to be harmonic if oy = 0.
we use ¥ to Jenote the space of harmonic forms and the
rrejection eperator which projects out the harmonic part of
a Jifferential fovym will be denoted by H. A in general does
not have an inverse. Rather, there exists a unique integrzl

cperator, G, (Green's operator) such that
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4G = GA = 1-H, GH = HG = 0 (A.6)

i

50 that 4 hss a unique inverse if and only if it is restricted

to Gperzie on the space of forms without a Larmonic part,

Scime useful picperties of these differential wpcrators aoce

(i) dar = ad, 34 = AS

(ii) Gd = 4G, G8 = 4G

(‘.11] 5'{ @ Qo= d'r if ‘fﬂx {._.‘”]}
(i) 8% = 0

() B - SH e 0, Bd = Gl o= 0

Fiaaily, boisenn iwe 5 forms aa inner product (0,3

is deltizd by

which

Qur s

{a,3l { a3,

M
tas the follewing properties:
(1) (:_;’B) a (3 g)

Lall ]

(i1) f{a,0? =0 Da=0

(iity) €(2a,3 ?= &, az) (A.8)
(i) {a,ra) = ¢ Dea=0

With these wotslicns and definitions we may now start
Iysis. The Bianchi constraint takes the simrle form

28 o= = [¥,B) (A.9)

Soplzing the opevstor d to both sides of (A.9) and voecalling

that d°«9, we Lave the integrability condition,

Ta

]

wiv,8] = 0. (A.10)

e (A.9) perturbatively in powers of 1/g, it is best

to fiict transfousm it into an integral equation. For this
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purpose we can use the Hodge decomposition theorem}0 It
states that any differential form W may be uniquely decomposed
in the following form:

W=da + 88 + Y

with ye¥ (A.11)

Applying this to (A.9), we get
dép = %[w,a] (A.12)

Applying the theorem once again to B itself, viz.,
B = da’ + 88" + y', Y'eN (A.13)
we obtain &§8 = 8da’. That is, the §8'+y' terms do not
contribute to X. We may therefore always choose B such that
dg = 0, H3 = 0 ‘ (A.14)
‘Using this gauge condition, we have ddB = . (dé+8d3)8 = A8

and Eq. (A.12) becomes
28 = % [W,B] (A.15)

Now in order that this has a solution, the RHS of (A.15)
must be in %. Thus we must demand

H{N,B] = O (A.16)
It is then not difficult to show that (A.10) and (A.16)
may be replaced by a single condition

(1 - 4G8§)[W,B] = O (A.17)

Then the solution to (A.15) is

B = %G[w.ﬂl | (A.18)
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Notice that due to the integrability condition this properly
satisfies the gauge condition (A.14). Putting this back into
(A.11), we find

Weda+ys+ %ac[w,n} (A.19)

This, together with (A.17), is the desired integral equation,
To solve (A.19) we may not simply iterate it since
da + y is not necessarily of order 1. However, we can in general
expand W,a and y in powers of ifg, viz.,
we 1 @ Vi
n=0

a = Z (‘;")n G(n)

y= ] (%)n Y(n) (A.20)

Substitution of (A.20) into (A.17) and (A.19) yields

(1-dG8) (W, y,B] = 0 (A.21)
with

Weny = 99y * Y(my * S6IN(, gy B (A.22)

(We.qy = 0)

If it were not for the integrability condition (A.Z1), the
recursive formula (A.22) would immediately give the desired
solution. But because of (A.21), d“[n) and Y(n) aT€ constrained
in a complicated manner for each n making it difficult to

explicitly write down the most general solution.
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It is however instructive to show how the particular
solutions of the form W = AF(B;%) are generated using (A.21)
and (A.22). TFirst, we take da(o) « )AdB and Y{O) = 0, i.e.

W(D) = AdB (A.23)

This satisfies (A.21). We then choose da iy = % 4G6 [B,B]

and v gy = % II[B,B] in (A.22). This gives

W =

) dGS[B,R] + % H[B,B] + 4G[dB,B]

(dGé + 8Gd + H)[B,B]

1
N TURR VIO T

(GA + H)[B,B}

A

= ¥ [B,B] (A.29)

Now (A.21) is again satisfied due to the Jacobi identity
{(B,B},B] = 0 (A.25)
si .= - ' -0
Choosing d°(n) Y(n) 0 for n > 2, we then find w(n)
for n > 2. Thercfore the series terminates and we obtain

an exact solution

W= Wegy ¢ 3 Wepy = A(dB + 7 [B,B])

- AF(B;%) (A.26)
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